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Gleason's Theorem and Completeness Criteria 
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We give some applications of Gleason's theorem to completeness criteria of 
inner product spaces using different families of subspaces, measures on them, 
and frame functions. Some open criteria problems are formulated. 

1. INTRODUCTION 

In his investigation of  the mathematical foundations of  quantum 
mechanics, Mackey (1963) posed the following problem: Describe the set of 
all states on the quantum logic L(H) for a separable real or complex Hilbert 
space H. 

We recall that a state on L(H) (H is not necessarily separable) is a 
mapping m: L(H)~[0, 1] such that 

re(H) = 1 (1) 

m ( ~ M i )  i = 1  (2) 

[here by Gt~rM, we shall mean the join of  a family of  mutually orthogo- 
nal subspaces {Mr : t ~ T} of L(H)]. Then 

mx(M ) = IIPM x II 2, M~L(H) (3) 

where PM is the orthoprojector from H onto M, is a state. 
If  {xi} is a system of unit vectors and {2, } is a system of positive 

numbers such that ~ ;  2~ = 1, then 

m(g)  = ~ 2imxe(M), M~L(H) (4) 
i 

is also a state. 
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The latter is equivalent to the following: 

mT(M) = tr(TPM), M eL(H) (5) 

Gleason (1957) published the answer to Mackey's problem in 1957: 

Theorem 1.1 (Gleason's theorem). If  H is a separable, real or complex 
Hilbert space, dim H ~ 2, then for any state m on L(H) there exists a 
unique positive, Hermitian trace operator T on H with tr T = 1 such that 

re(M) = tr(TPM ), M e L(H) (6) 

This theorem is a cornerstone for our investigation of completeness 
criteria of inner product spaces; for other applications of Gleason's theo- 
rem see, e.g., Dvure6enskij (1993). 

If we omit the completeness assumption on H, we obtain inner 
product spaces which possess Hilbert spaces as a proper subclass. Recently 
different families of closed subspaces of inner product spaces have been 
used as axiomatic models. Therefore it is of great importance for quantum 
mechanical models to know completeness criteria of inner product spaces. 

There are many interesting characterizations of Hilbert spaces using 
algebraic or topological properties (Amemiya and Araki, 1966/1967; Gross 
and Keller, 1977; Cattaneo and Marino, 1986; Holland, 1969; Dvure~enskij, 
1988; Gudder, 1974, 1975; Gudder and Holland, 1975) as well as measure- 
theoretical ones, which started with Hamhalter and Ptfik (1987). Let S be 
a real or complex inner product space with an inner product ( - , . ) .  We 
recall that for M ~_ S, M ~ ~ ,  by M • we mean the set of all x e S  such that 
(x,y) = 0 for each y e M .  We introduce the following families of closed 
subspaces that show quite different properties from the ordering point of 
view: 

W(S) = {M ~ S: M is a closed subspace of S} 

F(S) = {M ~_ S: M •177 = M} 

D(S) = { g  ~ S: 30NS {ui} , g = {u~} • 

R(S) = {M ~_ S: M = {u~} • V MONS {u~} in M} 

V(S) = {M ___ S: M = {ui} x-L, M -L = {v]} ~• V MONSs {u;} in M, 
and {vj} in M • 

E(S) = {M ~ S: M + M • = S} 

C(S) = {M __%_ S: dim M < ~ or dim M • < ~}  

P(S) = {M ___ S: dim M < ~}  
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It is easy to see that 

P(S) ~ C(S) ~_ E(S) ~ V(S) ~ R(S) ~_ D(S) ~ F(S) ~ W(S) (7) 

and, as we shall see, many of these inclusions can be proper. 
A mapping m from K(S), where K is the capital from the set 

{C, E, V, R, D, F, W}, into the real line R such that 

and for K - -  W we add the condition 

m(M v M -L) = m(S), ME W(S) (9) 

whenever {Mi: ieI} is a system of mutually orthogonal subspaces of K(S) 
for which the join O,-~x Mi exists in K(S), is said to be a charge, a signed 
measure, or a completely additive signed measure if (9) holds for any finite, 
countable, or arbitrary index set L If  m attains only positive values, we say 
that m is a finitely additive measure, measure, or completely additive 
measure, respectively, according to the cardinality of L A finitely additive 
measure m such that m(S) = 1 is said to be Jordan if it can be represented 
as a difference of two positive finitely additive measures. 

2. ALGEBRAIC COMPLETENESS CRITERIA 

The system F(S) is a complete 
is not orthomodular, in general. 
M ~ N, M, N~F(S),  then 

orthocomplemented lattice which 
The orthomodularity means: if 

N = M v (N A M • (lO) 

An important result of Amemiya and Araki (1966/1967) gives the first 
algebraic characterization: 

Theorem 2.1 (Amemiya-Araki).  An inner product space S is complete 
if and only if F(S) is an orthomodular lattice. 

The system of all splitting subspaces of S, E(S), is an orthomodular 
poset (OMP for short). 

The OMP E(S) has been used to the completeness characterization of 
inner product spaces by (1) Gross and Keller (1977): S is complete iff E(S) 
is a complete lattice; and (2) Cattaneo and Marino (1986): S is complete iff 
E(S) is a a-lattice. The author (Dvure~enskij, 1988) has weakened these 
conditions showing that S is complete iff E(S) is a quantum logic, that is, 
a a-OMP: 
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Theorem 2.2 (Dvure~enskij, 1988). An inner product space S is com- 
plete if and only if for any sequence of orthonormal vectors {Xn } ~  in S we 
have {xn}X• In particular, S is complete if and only if E(S) is a 
a-OMP. 

Now we show that Theorem 2.2 can be weakened as follows (oral 
communication by Dr. P. Pt~tk). We say that E(S) has (1) the subsequential 
interpolation property if for any sequence of orthonormal vectors {% } in S 
and any of its subsequences {e~) there is a splitting subspace M of S such 
that eniEM for any i, and ek .1. M for a n y  ekE{en}  -- {%i}; (2) the strong 
subsequential completeness property if for any sequence of linearly indepen- 
dent vectors {e~ } in S there is its subsequence {e~i } such that {en~ }• EE(S). 
These notions play an important role in Brook-Jewett  theorem formula- 
tions. 2 

Theorem 2.3. Let S be an inner product space. The following state- 
ments are equivalent: 

1. S is complete. 
2. E(S) has the subsequential interpolation property. 
3. E(S) has the strong subsequential completeness property. 

The system W(S) is a complete lattice with orthocomplementation 
such that 

M v M •  S, M___ M 1• (11) 

when proper inclusions in (11) are not excluded, as the following example 
shows: 

Example 2.4. Let S = l i c  12 be the set of all sequences from /2 
which are nonzero only for finitely many numbers of its terms. Let 
M = {{Ck}ES: Ek ck/k = 0}. Then 

MeW(S), M• = {0} ,  M = M v M • 1 6 2  M v ~ M •  

We recall the invalidity of the "excluded middle law" M v M • = S, 
M E W(S), can have some applications for using W(S) in fuzzy set models 
for quantum mechanics. 

To present the criterion of Holland (1969), we introduce the following 
notions: Two elements a and b of a lattice L are said to form a modular pair 

2We recall that, in general (D'Andrea and de Lucia, 1991), an OMP L has (I) the 
subsequential interpolation property if for any orthogonal sequence {a~ } in L and any of its 
subsequences {an,} there is an element beL  such that an, ~ b for any i, and ak • b for any 
ak~{an } -  {a~,}; and (2) the subsequential completeness property if for any orthogonal 
sequence {an) in L there is a subsequence { a J  such that Vi am, eL. 
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when (x v a) A b = x v (a/x b) holds for all x < b and are said to form a 
dual-modulator pair when (x A a) v b = x A (a v b) holds for all b < x. 

Theorem 2.5 (Holland). An inner product space S is complete if and 
only if every modular pair in W(S) is dual-modular. 

3. MEASURE-THEORETIC COMPLETENESS CRITERIA 

First we introduce some notations. We denote by P(S) and P~(S) 
the sets of  all finite-dimensional and all one-dimensional subspaces of 
S, respectively. We say that a charge m on K(S) is (i) bounded if 
sup{[m(M)[: M eK(S) } < oo [semibounded if inf{m(M): M eK(S) } > - ~ ] ;  
(ii) P(S)-bounded if  sup{Ira(M)[: M~P(S)}  < c~ [P(S)-semibounded if 
inf{m(M): MeP(S)}  > - ~ ] ;  (iii) Pl(S)-bounded if sup{]m(M)]: M e  
PI(S)} < ~ [P~(S)-semibounded if inf{m(M): MeP~(S)} > -oo]. 

We recall that if m is a Jordan charge on K(S), then m is bounded in 
all the above senses. 

It is easy to see that if m is a charge on W(S), then for any M e W(S) 
we have from (9) that 

re(M) = m(M •177 (12) 

The crucial role for our purposes will be played by the following 
lemma; its second part for separable S and finitely additive states has been 
proved in Hamhalter  and Ptfik (1987). Here we present a more general 
variant. 

Lemma 3.1. (1) For  any Pl(S)-bounded charge m on F(S) or E(S), 
dim S r 2, there exists a unique Hermitian operator T = Tm: S ~ S such 
that 

m(sp(x)) = (Tx, x), x = 5r (13) 

(2) Let v be a unit vector in the completeness ~q of  S, dim S ~ 2. Then 
for any e > 0 and any K > 0, there exists a 6 > 0 such that the following 
statement holds: If w e S  is a unit vector such that I I v -  wll < 6, then for 
any P(S)-bounded charge m such that the norm of  T =Tm is less than K, 
and for each finite-dimensional A satisfying the property v 1 A, we have 
the inequality 

[Im(A v sp(w)) - m(A) - m(sp(w))[] < E (14) 

Now we present the first measure-theoretic completeness criterion: 

Theorem 3.2 (Dvure6enskij and Pulmannovfi, 1989). An inner product 
space S is complete if and only if E(S) possesses at least one nonzero 
completely additive signed measure m. 
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Theorem 3.3. An inner product space S is complete if and only if 
K(S), where K is a capital letter from {E, V, R, D, F, W}, possesses at least 
one nonzero completely additive signed measure. 

The application of Theorem 3.2 gives the following non-measure-theo- 
retic criterion. 

Let 5:(S) be a unit sphere in S, that is, 5:(S) = {xES: IIxll = 1}. A 
mapping f :  5 : ( S ) ~  R such that there is a finite constant W, called the 
weight of f such that, for any MONS {x~} is S, we have 

E f(xi) = W 
i 

is said to be a frame function on S. It is clear that f ( 2 x ) = f ( x )  for any 
scalar 2sD,  [21 = 1. 

Theorem 3.4. An inner product space S is complete if and only if S 
possesses at least one nonzero frame function. 

The criterion of Theorem 3.4 has an interesting consequence for the 
criterion of Gudder and Holland (1975; Gudder, 1974, 1975), which says: 

Theorem 3.5. An inner product space S is complete if and only if any 
MONS in S is an ONB in S, i.e., 

VieS ,  VMONS {xi} of S, x = ~  (xi, x)x, (15) 
i 

We show now that (15) can be remarkably weakened as follows: 

Theorem 3.6 (Dvure6enskij, 1989b, 1990a). An inner product space S 
is complete if and only if 

30 # x s S (x s S) VMONS {xi } of S, x = ~ (xi, x)xi (16) 
i 

Proof. If we put f(u) = I(u, x)12, u ~5#(S), then by (16), f is a nonzero 
frame function on S, and applying Theorem 3.4, S becomes com- 
plete. QED 

4. GLEASON'S THEOREM AND REGULAR CHARGES 

We say that a charge m on E(S) [F(S)] is P(S)-regular if, given 
M~E(S) [M~F(S)] and given e > 0 there is a finite-dimensional subspace 
N of M such that 

Im(MnN • < E (17) 
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Proposition 4.1. Any E(S), dim S > 1, possesses unbounded charges. 

Proof Take the additive discontinuous functional ~b on R. Now let 
T # kI be a Hermitian trace operator on ~q, where k is a nonzero real 
constant and I is the identity on ,q. The mapping m: E(S) ~ R defined as 

re(M) = ~b(tr(TPg)), M~E(S) (18) 

is an unbounded charge on E(S). QED 

The following gives a generalization of the Aarnes (1970) decomposi- 
tion and Yosida-Hewitt-type decomposition (Yosida and Hewitt, 1952; 
Rfittimann, 1990). 

Theorem 4.2. Any Jordan charge m on E(S), dim S # 2, can be 
uniquely decomposed as a sum m = ml + m2, where m~ is a P(S)-regular 
charge, and m 2 is a Jordan charge vanishing on all finite-dimensional 
subspaces of S. 

As a corollary we present Gleason's analog for finitely additive 
measures on E(S): 

Theorem 4.3. A Jordan charge m on E(S), dim S ~ 2, is P(S)-regular 
if and only if there is a Hermitian operator T~Tr(~q) such that 

m(M) = tr(TP~), M ~ E(S) (19) 

We recall that in E(S) we have plenty of regular states [they are given 
by formula (19)] even for any incomplete S. For F(S) the situation is quite 
different: 

Theorem 4.4. An inner product space S is complete if and only if F(S) 
or W(S) possesses at least one nonzero Jordan P(S)-regular charge. 

As an interesting corollary of application of Gleason's theorem for 
finite-dimensional cases (and in incomplete S we do only that) we present 
the following result: 

Proposition 4.5. Let dim S -> 3; then on K(S), where K~{D, F, W), 
there is no two-valued state. 

Via M w-~ 11t, MeE(S), E(S) can he embedded injectively into E(S'). 
We present six open problems: 

Problem 4.6. (1) does F(S) or W(S) possess a finitely additive nonzero 
Jordan charge which is not P(S)-regular? 

(2) Is it possible to extend any finitely additive state on E(S) vanish- 
ing on P(S) to a finitely additive state on E(~q)? 
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(3) Does the Nikod~m convergence theorem hold for P(S)-regular 
Jordan charges on E(S)? 

(4) Is S complete if for any pair of MONSs {ei } and {f/} in S there 
is a unitary operator U: S --, S such that Uei =f. for any i? 

(5) Is S complete if there exist x ~5e(S) and a positive constant A > 0  
such that A llxl] 2 <  - ~i [(ei, x)l 2 holds for any MONS {ei} in S? 

(6) Is S complete if for any P(S)-regular Jordan charge m on E(S) 
there exists a Hahn decomposition, i.e., an element MEE(S) such that 
m(N) <O if N ~ M  and m(N) >O if N _ M •  

The author has found a positive solution to (5). 
It is clear that if x is a unit vector in ~q, then the mapping 

mx: E(S)~[0,  1] such that mx(M ) = IiP~xlI a, MsE(S),  is a P(S)-regular 
state on E(S). For complete S, mx has such important properties as the 
a-Jauch -Piton property (a-weak Jauch-Piron property) if for any sequence 
of splitting subspaces of S (any sequence of one-dimensional subspaces of 
S), {M,}, with m(Mn) = 0  for any n - 1 there is an MeE(S) such that 
Mn _ M for each n > 1, and re(M) = O. mx also has a support, i.e., an 
element MeE(S) such that mx(N) = 0 iff N / M. For incomplete S the 
situation is quite different: 

Theorem 4. 7. If  dim S ~ 2, the following statements are equivalent: 

(1) S is complete. 
(2) Any P(S)-regular finitely additive state on E(S) has the a -Jauch-  

Piron property. 
(3) Any P(S)-regular finitely additive state on E(S) has the a-weak 

Jauch-Piron property. 
(4) Any mx, x ere(~q), on E(S) has the a-weak Jauch-Piron property. 
(5) Any rex, x~Se($), on E(S) has a support. 

5. C O M P L E T E N E S S  CRITERIA SURVEY 

For the reader's convenience we summarize the above completeness 
criteria for inner product spaces; for more details see Dvurerenskij (1993). 

Theorem 5.1. Let S be an inner product space. The following state- 
ments are equivalent: 

1. S is complete. 
2. E(S) = W(S) (Gudder, 1974). 
3. F(S) = W(S) (Gudder, 1974). 
4. For any proper closed subspaces M of S, M •  {0} (Gudder, 

1974). 
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5. If f is a continuous linear functional on S, there exists y e S  such 
that f(x) = (x, y) for all x~S (Gudder, 1974). 

6. For any nonzero continuous linear functional f on S, 
(Ker f )  • # {O}. 

7. For any continuous linear functional f on S, KerfeE(S). 
8. F(S) is orthomodular (Amemiya and Araki, 1966/1967, Theorem 

2.1). 
9. E(S) = F(S). 

10. E(S) is a complete lattice (Gross and Keller, 1977). 
11. E(S) is a a-lattice (Cattaneo and Marino, 1986). 
12. E(S) is a cr-orthoposet (=quantum logic) (Dvure6enskij, 1988, 

Theorem 2.2). 
13. E(S) possesses the join of any sequence of mutually orthogonal 

one-dimensional subspaces of S (Dvure6enskij, 1988, Theorem 2.2). 
14. E(S) has the subsequential interpolation property. 
15. E(S) has the strong subsequential completeness property. 
16. Any modular pair in W(S) is dual-modular (Holland, 1969). 
17. D(S) is an OML (Canetti and Marino, 1988). 
18. R(S) = F(S) (Cattaneo et al., 1987, Theorem 2.2). 
19. D(S) = E(S) (Canetti and Marino, 1988). 
20. K(S), if K~{C, E, V, R, D, F, W}, possesses at least one nonzero, 

completely additive signed measure (Dvure6enskij and Pulman- 
novfi, 1988, 1989). 

21. S possesses at least one nonzero frame function (Dvure6enskij, 
1989b, 1990a). 

22. Every MONS in S is an ONB in S (Gudder and Holland, 1975, 
Theorem 3.5). 

23. There exists a unit vector y ~ S  such that y = ~i (Y, xi)xi for any 
MONS {x;} in S (Dvure6enskij, 1989b, 1990a). 

24. F(S) [W(S)] possesses at least one Jordan P(S)-regular, nonzero 
charge (Dvure6enskij, 1991, n.d.). 

25. K(S), where K~{E, V, R} and dimension of S is a countable 
cardinal, possesses at least one nontrivial, strongly P(S)-regular, 
finitely additive measure (Dvure~enskij et al., 1992; Dvure~enskij, 
1990b). 

26. K(S), where K~{D, F, W}, possesses at least one state having a 
support. 

27. K(S), if K~{D, F, W} and the dimension of S is a nonmeasur- 
able cardinal, possesses at least one nontrivial signed measure 
(Dvure6enskij, 1989a,b). 

28. K(S), where K~{F, W} possesses at least one signed measure 
nonvanishing on P(S) (Dvure~enskij, 1993a). 
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29. K(S), where K~{F, W} and S is Dacey, 3 possesses at least one 
signed measure nonvanishing on P(S) (Dvure6enskij, 1991). 

30. K(S), where K ~ {F, W} possesses at least one finitely additive state 
with a finite-dimensional support (Dvure~enskij, 1991). 

31. K(S), where Ke{F, W}, possesses at least one finitely additive 
state with a P(S)-regular support (Dvure6enskij, 1992b). 

32. Any P(S)-regular state on E(S) has a support in E(S) 
(Dvure6enskij, 1992b). 

33. For  any sequence {xi } of orthonormal vectors in S and all positive 
numbers {~'i }, with ~,i 2i = 1, the state  ~i 2imx i has a support in 
E(S) (Dvure~enskij, 1992b). 

34. For  any infinite sequence {xi } of  orthonormal vectors in S, the 
state ~ i  m~/2i has a support in E(S) (Dvure6enskij, 1992b). 

35. There is a strong system J/g of states on E(S), dim S ~ 2, such 
that any counter on Con(~ ' )  is a-expectational (Dvure~enskij, 
1992b). 

36. Any P(S)-regular finitely additive state on E(S) has the a - Jauch -  
Piron property (Dvure6enskij, 1993). 

37. Any P(S)-regular finitely additive state on E(S) has the a-weak 
Jauch-Pi ron  property (Dvure6enskij, 1993). 

38. Any m~, x ~6g(~), has the a-weak Jauch-P i ron  property (Dvure- 
~enskij, 1993). 
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